STMF Publications with LBM

Two-phase in porous media

[P1] [P2] [P3] [P6] [P7]


\(\hspace{3mm}\)

LBM for crystal growth

[P4] [P5] [p1] [T1]
[R4] [R5] [R6] [R7]


\(\hspace{3mm}\)

LBM for fractional ADE

[P8]

\(\hspace{3mm}\)


Ternary Two-phase

[P9] [P11] [T2] [T3]
[R9] [R11] [R12] [T4]

\(\hspace{3mm}\)


Courses

[L1] [L2]

Dissolution

[P10]


\(\hspace{3mm}\)

Single-phase NS

[R1] [R8]


\(\hspace{3mm}\)

Lattice Gas Automaton

[P12] [P13]


\(\hspace{3mm}\)

Averaged transport models

[R2] [R3]


\(\hspace{3mm}\)

HDR Thesis

[H1]


A developer’s guide of LBM_Saclay can be found in ref [R10]

International journals

Lattice Boltzmann Methods

[P1]

Genty A. and V. Pot. Numerical simulation of 3D liquid-gas distribution in porous media by a two-phase lattice Boltzmann method. Transport in Porous Media, 96: 271-294, 2013. https://doi.org/10.1007/s11242-012-0087-9

[P2]

Genty A. and V. Pot. Numerical Calculation of Effective Diffusion in Unsaturated Porous Media by the TRT Lattice Boltzmann Method. Transport in Porous Media, 105(2): 391-410, 2014. https://doi.org/10.1007/s11242-014-0374-8

[P3]

Pot V., S. PETH, O. MONGA, L.E. VOGEL, A. Genty, P. GARNIER, L. VIEUBLE-GONOD, M. OGURRECK, F. BECKMANN and P.C. BAVEYE. Three-dimensional distribution of water and air in soil pores: Comparison of two-phase two relaxation-times lattice-Boltzmann and morphological model outputs with synchrotron X-ray computed tomography data. Advances in Water Resources, 84: 87-102, 2015. https://doi.org/10.1016/j.advwatres.2015.08.006

[P4]

Cartalade A., Younsi A., M. Plapp, Lattice Boltzmann simulations of 3D crystal growth: Numerical schemes for a phase-field model with anti-trapping current. Computers & Mathematics with Applications, 71 (9), pp. 1784–1798, 2016. https://doi.org/10.1016/j.camwa.2016.02.029

[P5]

Younsi A. and A. Cartalade, On anisotropy function in crystal growth simulations using Lattice Boltzmann equation. Journal of Computational Physics, 325, pp. 1–21, 2016. http://dx.doi.org/10.1016/j.jcp.2016.08.014

[P6]

Genty A., S. GUEDDANI and M. DYMITROWSKA. Computation of Saturation Dependence of Effective Diffusion Coefficient in Unsaturated Argillite Micro-fracture by Lattice Boltzmann Method. Transport in Porous Media, 117(1): 149-168, 2017. https://doi.org/10.1007/s11242-017-0826-z

[P7]

BEN HADJ HASSINE S., M. DYMITROWSKA, V. Pot and A. Genty. Gas Migration in Highly Water-Saturated Opalinus Clay Microfractures Using a Two-Phase TRT LBM. Transport in Porous Media, 116(3): 975-1003, 2017. https://doi.org/10.1007/s11242-016-0809-5

[P8]

Cartalade A., A. Younsi and M.-C. Néel, Multiple-Relaxation-Time Lattice Boltzmann scheme for fractional advection-diffusion equation. Computer Physics Communications, 234, pp. 40–54, 2019. https://doi.org/10.1016/j.cpc.2018.08.005

[P9]

Verdier W., P. Kestener, A. Cartalade, Performance portability of lattice Boltzmann methods for two-phase flows with phase change, Computer Methods in Applied Mechanics and Engineering, 370, 113266, 2020. https://doi.org/10.1016/j.cma.2020.113266

[P10]

Boutin T., Verdier W., A. Cartalade, Grand-Potential-based phase-field model of dissolution/precipitation: lattice Boltzmann simulations of counter term effect on porous medium, Computational Materials Science, 207, 111261, 2022. https://doi.org/10.1016/j.commatsci.2022.111261

[P11]

Verdier W., A. Cartalade, M. Plapp, Grand-Potential phase field simulations of droplet growth and sedimentation in a two-phase ternary fluid, Modelling and Simulation in Materials Science and Engineering, 32, 065028, 2024. https://doi.org/10.1088/1361-651X/ad627e

Lattice Gas Automaton (LGA)

[P12]

Pot V. and A. Genty. Dispersion dependence on retardation in a real fracture geometry using lattice-gas cellular automaton. Advances in Water Resources, 30: 273-283, 2007. https://doi.org/10.1016/j.advwatres.2005.08.011

[P13]

Pot V. and A. Genty. Sorbing and non-sorbing solute migration in rough fractures with a multi-species LGA model: Dispersion dependence on retardation and roughness. Transport in Porous Media, 59(2): 175-196, 2005. https://doi.org/10.1007/s11242-004-1175-2

Peer-reviewed proceeding

[p1]

Younsi A., A. Cartalade, M. Quintard, Lattice Boltzmann Simulations for Anisotropic Crystal Growth of a Binary Mixture. Proceeding of The 15th International Heat Transfer Conference (IHTC-15), 9 pages, 10-15 Aug. Kyoto, paper 9797, ISBN: 978-1-56700-421-2. 2014. http://dx.doi.org/10.1615/IHTC15.cpm.009797

List of PhD thesis and HDR

[T1]

Younsi A., Simulations des effets des écoulements sur la croissance cristalline d’un mélange binaire. Approche par méthode de Boltzmann sur réseau. Thèse de doctorat CEA/Institut Polytechnique de Paris. 2015.

[H1]

Cartalade A., Modèles à champ de phase et équations fractionnaires simulés par méthode de Boltzmann sur réseaux. Mémoire d’Habilitation à Diriger des Recherches (HDR) en Physique, Université Paris-Sud. 95 pages. 2019. http://dx.doi.org/10.13140/RG.2.2.10705.07529

[T2]

Verdier W., Phase-field modelling and simulations of phase separation in the two-phase nuclear glass Na \(_2\) O–SiO \(_2\) –MoO \(_3\). Thèse de doctorat CEA/Institut Polytechnique de Paris. 2022.

[T3]

Boutin T., Simulation à l’échelle mésoscopique des gels d’altération des verres nucléaires. Thèse de doctorat CEA/Université Paris-Saclay (ED SMEMaG). https://theses.hal.science/tel-05147983v1. 2025.

[T4]

Méjanès C., Modélisation et simulation de la séparation de phase dans les verres nucléaires sous influence de la variation de densité. Thèse de doctorat CEA/Université Paris-Saclay (ED SMEMaG). 2025.

List of CEA Technical Reports

[R1]

Cartalade A., Lattice Boltzmann Method for modelling flow and transport in porous media: natural convection and Darcy-Brinkman-Forchheimer equation. PDF Report DEN-DM2S-SFME-LSET-RT/09-004/A. 52 pages (2 tech notes). 2009.

[R2]

Cartalade A., Dual-porosity transport model simulated by a Multiple-Relaxation-Time Lattice Boltzmann Method and application on BEETI experimental device. PDF Report DEN-DM2S-STMF-LATF-RT/11-002/A. 36 pages. 2011.

[R3]

Cartalade A. and A. Genty, Effective diffusion of 3D porous media: Lattice Boltzmann simulations.Ref: DEN-DM2S-STMF-LATF-RT/12-016/A. 22 pages. 2012.

[R4]

Cartalade A. and É. Régnier, Lattice Boltzmann simulations for crystal growth problems with a phase-field model I: pure substance. Ref: DEN-DM2S-STMF-LATF-RT/12-005/A. 28 pages. 2012.

[R5]

Cartalade A., Lattice Boltzmann simulations for crystal growth problems with a phase-field model II: Model with thin interface limit of 3D pure substance. PDF Report DEN-DM2S-STMF-LATF-NT/13-008/A. 30 pages. 2013.

[R6]

Younsi A. et A. Cartalade, Comparisons of Lattice Boltzmann schemes for simulating a transport equation with variable parameters and applications on crystal growth problems. Ref: DEN-DM2S-STMF-LATF-NT/14-033/A. 22 pages. 2014.

[R7]

Hellaudais V., Younsi A. et A. Cartalade, Simulations of 2D/3D anisotropic shapes of crystal growth by a phase-field model: spherical and cubic harmonics of interfacial energy. Ref: DEN-DM2S-STMF-LMSF-NT/15-003/A. 28 pages. 2015.

[R8]

Cartalade A., Comparative simulations of averaged model for simulating flow in porous media.Ref: DEN-DM2S-STMF-LMSF-RT/16-012/A. 19 pages. 2016.

[R9]

Verdier W., Modèle à champ de phase pour les systèmes ternaires diphasiques, Rapport DES/ISAS/DM2S/STMF/LMSF/NT/2021-67858/A. 31 pages. 2021.

[R10]

Verdier W., Boutin T., P. Kestener, A. Cartalade, LBM_saclay : code HPC multi-architectures sur base LBM. Guide du développeur.PDF Report DES/ISAS/DM2S/STMF/LMSF/NT/2022-70869/A. 116 pages. 2022.

[R11]

Boutin T., Modèle champ de phase de dissolution d’un solide à 2 composants : application à l’alteration des verres de stockages borosilicatés. Rapport DES/ISAS/DM2S/STMF/LMSF/NT/2022-70883/A. 31 pages. 2022.

[R12]

Méjanès C., Modèle champ de phase de la séparation de phase d’un mélange ternaire dans un verre borro-sillicaté. Rapport DES/ISAS/DM2S/STMF/LMSF/NT/2022-70883/A. 39 pages. 2023.

Lectures and courses

[L1]

Cartalade A., Cours INSTN CFD diphasique du STMF – Partie 1.C. “Approche thermodynamique des interfaces : les modèles à champ de phase”. 325 slides + 50 annexes. 2025

[L2]

Cartalade A., Lattice Boltzmann Methods – Part I.A: introduction. “Theory and examples on two-phase flows and phase change”. 243 slides. 2025.