.. _Analytical-Solutions-Two-Phase: Analytical solutions for two-phase ================================== Laplace's law ------------- .. figure:: ../../FIGS/01_FIGS_VALIDATIONS/Laplace-Law.png :class: align-left :height: 180 :width: 200 :scale: 80 The difference between the pressure inside the droplet :math:`P_{in}` and the pressure outside :math:`P_{out}` is equal to .. math:: :label: Laplace-Law \underbrace{P_{in}-P_{out}}_{\Delta P}=\frac{\sigma}{R} where :math:`\sigma` is the surface tension and :math:`R` is the droplet radius. Analytical solution of double-Poiseuille flow --------------------------------------------- .. math:: :label: u_{x}(y)=\begin{cases} \frac{Gh^{2}}{2\eta_{A}}\left[-\left(\frac{y}{h}\right)^{2}-\frac{y}{h}\left(\frac{\eta_{A}-\eta_{B}}{\eta_{A}+\eta_{B}}\right)+\frac{2\eta_{A}}{\eta_{A}+\eta_{B}}\right] & \mbox{if }0\leq y\leq h\\ \frac{Gh^{2}}{2\eta_{B}}\left[-\left(\frac{y}{h}\right)^{2}-\frac{y}{h}\left(\frac{\eta_{A}-\eta_{B}}{\eta_{A}+\eta_{B}}\right)+\frac{2\eta_{B}}{\eta_{A}+\eta_{B}}\right] & \mbox{if }-h\leq y\leq0 \end{cases} .. _Analytical-Solution-Capillary-Wave-Prosperetti: Analytical solution of Prosperetti for capillary wave ----------------------------------------------------- The example of such a study is given by the test case of capillary wave. For that test case, an analytical solution exists [2]_. The objective is to study the influence of mesh on the solution accuracy. The amplitude is .. math:: :label: Sol_Prosperetti a(t)=\frac{4(1-4\beta)\nu^{2}k^{4}}{8(1-4\beta)\nu^{2}k^{4}+\omega_{0}^{2}}a_{0}\text{erfc}(\nu k^{2}t)^{1/2}+\sum_{i=1}^{4}\frac{z_{i}}{Z_{i}}\left(\frac{\omega_{0}^{2}a_{0}}{z_{i}^{2}-\nu k^{2}}-u_{0}\right)\times\exp[(z_{i}^{2}-\nu k^{2})t]\text{erfc}(z_{i}t^{1/2}) where :math:`\nu` is the kinematic viscosity which is identical for both fluids, :math:`k` is the wave number which is related to the wavelength :math:`\lambda` by :math:`k=2\pi/\lambda`. The coefficient :math:`\beta` is defined by the liquid :math:`\rho_l` and gas :math:`\rho_g` densities: .. math:: :label: Def_beta_prosperetti \beta=\frac{\rho_{l}\rho_{g}}{(\rho_{l}+\rho_{g})^{2}} :math:`\omega_0` is the inviscid natural frequency given by .. math:: :label: Natural_Freq_Prosperetti \omega_{0}=\frac{\rho_{l}-\rho_{g}}{\rho_{l}+\rho_{g}}gk+\frac{\sigma k^{3}}{\rho_{l}+\rho_{g}} where :math:`g` is the gravity. In the following verifications :math:`g=0`. The :math:`z_i`'s are the four roots of the algebric equation .. math:: :label: Eq_zi z^{4}-4\beta(k^{2}\nu)^{1/2}z^{3}+2(1-6\beta)k^{2}\nu z^{2}+4(1-3\beta)(k^{2}\nu)^{3/2}z+(1-4\beta)\nu^{2}k^{4}+\omega_{0}^{2}=0 and .. math:: :label: Def_Z1 Z_{1}=(z_{2}-z_{1})(z_{3}-z_{1})(z_{4}-z_{1})